Topic 1 Statistical Analysis: Knowledge Audit

Name:

1 Statistical Analysis - Core

	Assessment statement	OK	Review	Get help
1.1.1	State that error bars are a graphical representation of the variability of data.			
1.1.2	Calculate the mean and standard deviation of a set of values.			
1.1.3	State that the term standard deviation is used to summarize the spread of values around the mean, and that 68% of the values fall within one standard deviation of the mean.			
1.1.4	Explain how the standard deviation is useful for comparing the means and the spread of data between two or more samples.			
1.1.5	Deduce the significance of the difference between two sets of data using calculated values for t and the appropriate tables.			
1.1.6	Explain that the existence of a correlation does not establish that there is a causal relationship between two variables.			

Name:

2.1 Cell Theory - Core

	Assessment statement	OK	Review	Get help
2.1.1	Outline the cell theory.			
2.1.2	Discuss the evidence for the cell theory.			
	State that unicellular organisms carry out all the functions of life.			
	Compare the relative sizes of molecules, cell membrane thickness, viruses, bacteria, organelles and cells, using the appropriate SI unit.			
	Calculate the linear magnification of drawings and the actual size of specimens in images of known magnification.			
	Explain the importance of the surface area to volume ratio as a factor limiting cell size.			
	State that multicellular organisms show emergent properties.			
	Explain that cells in multicellular organisms differentiate to carry out specialized functions by expressing some of their genes but not others.			
	State that stem cells retain the capacity to divide and have the ability to differentiate along different pathways.			
2.1.10	Outline one therapeutic use of stem cells. See 2.1.9			

Name:

2.2 Prokaryotic Cells - Core

	Assessment statement	OK	Review	Get help
2.2.1	Draw and label a diagram of the ultrastructure of Escherichia coli (E. Coli) as an example of a prokaryote.			
2.2.2	Annotate the diagram from 2.2.1 with the functions of each named structure.			
2.2.3	Identify structures from 2.2.1 in electron micrographs of E. coli.			
2.2.4	State that prokaryotic cells divide by binary fission.			

Name:

2.3 Eukaryotic Cells - Core

	Assessment statement	OK	Review	Get help
2.3.1	Draw and label a diagram of the ultrastructure of a liver cell as an example of an animal cell.			
2.3.2	Annotate the diagram from 2.3.1 with the functions of each named structure.			
2.3.3	Identify structures from 2.3.1 in electron micrographs of liver cells.			
2.3.4	Compare prokaryotic and eukaryotic cells.			
2.3.3	State three differences between plant and animal cells.			
2.3.4	Outline two roles of extracellular components.			

Name:

2.4 Membranes - Core

	Assessment statement	OK	Review	Get help
2.4.1	Draw and label a diagram of the ultrastructure of a liver cell as an example of an animal cell.			
2.4.2	Explain how the hydrophobic and hydrophilic properties of phospholipids help to maintain the structure of cell membranes.			
2.4.3	List the functions of membrane proteins.			
2.4.4	Define diffusion and osmosis.			
2.4.5	Explain passive transport across membranes by simple diffusion and facilitated diffusion.			
2.4.6	Explain the role of protein pumps and ATP in active transport across membranes.			
2.4.7	Explain how vesicles are used to transport materials within a cell between the rough endoplasmic reticulum, Golgi apparatus and plasma membrane.			
2.4.8	Describe how the fluidity of the membrane allows it to change shape, break and reform during endocytosis and exocytosis.			

Topic 2 Ecology and Evolution: Knowledge Audit

Name:

2.5 Cell Division - Core

	Assessment statement	OK	Review	Get help
2.5.1	Outline the stages in the cell cycle, including interphase (G1, S, G2), mitosis and cytokinesis.			
	State that tumours (cancers) are the result of uncontrolled cell division and that these can occur in any organ or tissue.			
	State that interphase is an active period in the life of a cell when many metabolic reactions occur, including protein synthesis, DNA replication and an increase in the number of mitochondria and/or chloroplasts.			
2.5.4	Describe the events that occur in the four phases of mitosis (prophase, metaphase, anaphase and telophase).			
	Explain how mitosis produces two genetically identical nuclei.			
	State that growth, embryonic development, tissue repair and asexual reproduction involve mitosis.			

Name:

3.1 Chemicals Elements and Water - Core

	Assessment statement	OK	Review	Get help
	State that the most frequently occurring chemical elements in living things are carbon, hydrogen, oxygen and nitrogen.			
	State that a variety of other elements are needed by living organisms, including sulfur, calcium, phosphorus, iron and sodium.			
3.1.3	State one role for each of the elements mentioned in 3.1.2.			
	Draw and label a diagram showing the structure of water molecules to show their polarity and hydrogen bond formation			
	Outline the thermal, cohesive and solvent properties of water.			
	Explain the relationship between the properties of water and its uses in living organisms as a coolant, medium for metabolic reactions and transport medium. See 3.1.5			

Name:

3.2 Carbohydrates, Lipids, and Proteins - Core

	Assessment statement	OK	Review	Get help
3.2.1	Distinguish between organic and inorganic compounds.			
3.2.2	Identify amino acids, glucose, ribose and fatty acids from diagrams showing their structure.			
3.2.3	List three examples each of monosaccharides, disaccharides and polysaccharides			
3.2.4	State one function of glucose, lactose and glycogen in animals, and of fructose, sucrose and cellulose in plants.			
	Outline the role of condensation and hydrolysis in the relationships between monosaccharides, disaccharides and polysaccharides; between fatty acids, glycerol and triglycerides; and between amino acids and polypeptides.			
3.2.6	State three functions of lipids.			
3.2.7	Compare the use of carbohydrates and lipids in energy storage.			

Name:

3.3 DNA Structure - Core

	Assessment statement	OK	Review	Get help
3.3.1	Outline DNA nucleotide structure in terms of sugar (deoxyribose), base and phosphate.			
3.3.2	State the names of the four bases in DNA.			
3.3.3	Outline how DNA nucleotides are linked together by covalent bonds into a single strand.			
3.3.4	Explain how a DNA double helix is formed using complementary base pairing and hydrogen bonds.			
3.3.5	Draw and label a simple diagram of the molecular structure of DNA.			

Name:

3.4 DNA Replication - Core

	Assessment statement	OK	Review	Get help
3.4.1	Explain DNA replication in terms of unwinding the double helix and separation of the strands by helicase, followed by formation of the new complementary strands by DNA polymerase.			
3.4.2	Explain the significance of complementary base pairing in the conservation of the base sequence of DNA.			
3.4.3	State that DNA replication is semiconservative.			

Name:

3.5 Transcription and Translation - Core

	Assessment statement	OK	Review	Get help
3.5.1	Compare the structure of RNA and DNA.			
3.5.2	Outline DNA transcription in terms of the formation of an RNA strand complementary to the DNA strand by RNA polymerase.			
3.5.3	Describe the genetic code in terms of codons composed of triplets of bases.			
3.5.4	Explain the process of translation, leading to polypeptide formation.			
3.5.5	Discuss the relationship between one gene and one polypeptide.			

Name:

3.6 Enzymes - Core

	Assessment statement	OK	Review	Get help
3.6.1	Define enzyme and active site.			
3.6.2	Explain enzyme–substrate specificity. See 3.6.1			
3.6.3	Explain the effects of temperature, pH and substrate concentration on enzyme activity.			
3.6.4	Define denaturation.			
3.6.5	Explain the use of lactase in the production of lactose-free milk.			

Name:

3.7 Cell Respiration - Core

	Assessment statement	OK	Review	Get help
3.7.1	Define cell respiration.			
3.7.2	State that, in cell respiration, glucose in the cytoplasm is broken down by glycolysis into pyruvate, with a small yield of ATP.			
3.7.3	Explain that, during anaerobic cell respiration, pyruvate can be converted in the cytoplasm into lactate, or ethanol and carbon dioxide, with no further yield of ATP.			
3.7.4	Explain that, during aerobic cell respiration, pyruvate can be broken down in the mitochondrion into carbon dioxide and water with a large yield of ATP.			

Name:

3.8 Photosynthesis - Core

	Assessment statement	OK	Review	Get help
3.8.1	State that photosynthesis involves the conversion of light energy into chemical energy.			
3.8.2	State that light from the Sun is composed of a range of wavelengths (colours).			
3.8.3	State that chlorophyll is the main photosynthetic pigment.			
3.8.4	Outline the differences in absorption of red, blue and green light by chlorophyll.			
3.8.5	State that light energy is used to produce ATP, and to split water molecules (photolysis) to form oxygen and hydrogen.			
3.8.6	State that ATP and hydrogen (derived from the photolysis of water) are used to fix carbon dioxide to make organic molecules.			
3.8.7	Explain that the rate of photosynthesis can be measured directly by the production of oxygen or the uptake of carbon dioxide, or indirectly by an increase in biomass.			
3.8.8	Outline the effects of temperature, light intensity and carbon dioxide concentration on the rate of photosynthesis.			

Topic 4 Genetics: Knowledge Audit

Name:

4.1 Chromosomes, Genes, Alleles, and Mutations - Core

	Assessment statement	OK	Review	Get help
4.1.1	State that eukaryote chromosomes are made of DNA and proteins.			
4.1.2	Define gene, allele and genome.			
4.1.3	Define gene mutation.			
4.1.4	Explain the consequence of a base substitution mutation in relation to the processes of transcription and translation, using the example of sickle-cell anemia.			

Topic 4 Genetics: Knowledge Audit

Name:

4.2 Meiosis - Core

	Assessment statement	OK	Review	Get help
4.2.1	State that meiosis is a reduction division of a diploid nucleus to form haploid nuclei.			
4.2.2	Define homologous chromosomes.			
4.2.3	Outline the process of meiosis, including pairing of homologous chromosomes and crossing over, followed by two divisions, which results in four haploid cells.			
4.2.4	Explain that non-disjunction can lead to changes in chromosome number, illustrated by reference to Down syndrome (trisomy 21).			
4.2.5	State that, in karyotyping, chromosomes are arranged in pairs according to their size and structure.			
4.2.6	State that karyotyping is performed using cells collected by chorionic villus sampling or amniocentesis, for pre-natal diagnosis of chromosome abnormalities.			
4.2.7	Analyse a human karyotype to determine gender and whether nondisjunction has occurred.			

Topic 4 Genetics: Knowledge Audit

Name:

4.3 Theoretical Genetics - Core

	Assessment statement	OK	Review	Get help
	Define genotype, phenotype, dominant allele, recessive allele, codominant alleles, locus, homozygous, heterozygous, carrier and test cross.			
	Determine the genotypes and phenotypes of the offspring of a monohybrid cross using a Punnett grid			
	State that some genes have more than two alleles (multiple alleles).			
	Describe ABO blood groups as an example of codominance and multiple alleles.			
4.3.5	Explain how the sex chromosomes control gender by referring to the inheritance of X and Y chromosomes in humans.			
	State that some genes are present on the X chromosome and absent from the shorter Y chromosome in humans.			
4.3.7	Define sex linkage.			
	Describe the inheritance of colour blindness and hemophilia as examples of sex linkage.			
	State that a human female can be homozygous or heterozygous with respect to sex-linked genes.			
	Explain that female carriers are heterozygous for X-linked recessive alleles.			
	Predict the genotypic and phenotypic ratios of offspring of monohybrid crosses involving any of the above patterns of inheritance.			
	Deduce the genotypes and phenotypes of individuals in pedigree charts.			

Topic 4 Genetics: Knowledge Audit

Name:

4.4 Genetic Engineering and Biotechnology - Core

	Assessment statement	OK	Review	Get help
	Outline the use of polymerase chain reaction (PCR) to copy and amplify minute quantities of DNA.			
	State that, in gel electrophoresis, fragments of DNA move in an electric field and are separated according to their size.			
	State that gel electrophoresis of DNA is used in DNA profiling.			
	Describe the application of DNA profiling to determine paternity and also in forensic investigations. See 4.4.3			
	Analyse DNA profiles to draw conclusions about paternity or forensic investigations.			
	Outline three outcomes of the sequencing of the complete human genome.			
	State that, when genes are transferred between species, the amino acid sequence of polypeptides translated from them is unchanged because the genetic code is universal.			
	Outline a basic technique used for gene transfer involving plasmids, a host cell (bacterium, yeast or other cell), restriction enzymes(endonucleases) and DNA ligase.			
	State two examples of the current uses of genetically modified crops or animals.			
	Discuss the potential benefits and possible harmful effects of one example of genetic modification.			
4.4.11	Define clone.			
	Outline a technique for cloning using differentiated animal cells. See 4.4.11			
4.4.13	Discuss the ethical issues of therapeutic cloning in humans.			

Name:

5.1 Communities and Ecosystems – Core

	Assessment statement	OK	Review	Get help
	Define species, habitat, population, community, ecosystem and ecology.			
5.1.2	Distinguish between autotroph and heterotroph.			
	Distinguish between consumers, detritivores and saprotrophs.			
	Describe what is meant by a food chain, giving three examples, each with at least three linkages (four organisms).			
5.1.5	Describe what is meant by a food web.			
5.1.6	Define trophic level.			
	Deduce the trophic level of organisms in a food chain and a food web.			
	Construct a food web containing up to 10 organisms, using appropriate information.			
	State that light is the initial energy source for almost all communities.			
5.1.10	Explain the energy flow in a food chain.			
5.1.11	State that energy transformations are never 100% efficient.			
5.1.12	Explain reasons for the shape of pyramids of energy.			
	Explain that energy enters and leaves ecosystems, but nutrients must be recycled			
	State that saprotrophic bacteria and fungi (decomposers) recycle nutrients.			

Name:

5.2 The Greenhouse Effect - Core

	Assessment statement	OK	Review	Get help
	Draw and label a diagram of the carbon cycle to show the processes involved.			
	Analyse the changes in concentration of atmospheric CO ₂ using historical records.			
	Explain the relationship between rises in concentrations of atmospheric CO ₂ , methane and oxides of nitrogen and the enhanced greenhouse effect.			
5.2.4	Outline the precautionary principle.			
	Evaluate the precautionary principle as a justification for strong action in response to the threats posed by the enhanced greenhouse effect.			
	Outline the consequences of a global temperature rise on arctic ecosystems.			

Name:

5.3 Populations - Core

	Assessment statement	OK	Review	Get help
5.3.1	Outline how population size is affected by natality, immigration, mortality and emigration.			
5.3.2	Draw and label a graph showing a sigmoid (S-shaped) population growth curve.			
5.3.3	Explain the reasons for the exponential growth phase, the plateau phase and the transitional phase between these two phases.			
5.3.4	List three factors that set limits to population increase.			

Name:

5.4 Evolution - Core

	Assessment statement	OK	Review	Get help
5.4.1	Define evolution.			
	Outline the evidence for evolution provided by the fossil record, selective breeding of domesticated animals and homologous structures.			
	State that populations tend to produce more offspring than the environment can support.			
	Explain that the consequence of the potential overproduction of offspring is a struggle for survival.			
5.4.5	State that the members of a species show variation.			
	Explain how sexual reproduction promotes variation in a species.			
5.4.7	Explain how natural selection leads to evolution.			
	Explain two examples of evolution in response to environmental change; one must be antibiotic resistance in bacteria.			

Topic 5 Ecology and Evolution: Knowledge Audit

Name:

5.5 Classification - Core

	Assessment statement	OK	Review	Get help
5.5.1	Outline the binomial system of nomenclature.			
5.5.2	List seven levels in the hierarchy of taxa—kingdom, phylum, class, order, family, genus and species—using an example from two different kingdoms for each level.			
5.5.3	Distinguish between the following phyla of plants, using simple external recognition features: bryophyta, filicinophyta, coniferophyta and angiospermophyta.			
5.5.4	Distinguish between the following phyla of animals, using simple external recognition features: porifera, cnidaria, platyhelminthes, annelida, mollusca and arthropoda.			
5.5.5	Apply and design a key for a group of up to eight organisms.			

Name:

6.1 Digestion - Core

	Assessment statement	OK	Review	Get help
6.1.1	Explain why digestion of large food molecules is essential.			
6.1.2	Explain the need for enzymes in digestion.			
6.1.3	State the source, substrate, products and optimum pH conditions for one amylase, one protease and one lipase.			
6.1.4	Draw and label a diagram of the digestive system.			
6.1.5	Outline the function of the stomach, small intestine and large intestine.			
6.1.6	Distinguish between absorption and assimilation.			
6.1.7	Explain how the structure of the villus is related to its role in absorption and transport of the products of digestion.			

Name:

6.2 The Transport System - Core

Assessment statement	OK	Review	Get help
Draw and label a diagram of the heart showing the chambers, associated blood vessels, valves and to blood through the heart.			
State that the coronary arteries supply heart musc oxygen and nutrients.	cle with		
6.2.3 Explain the action of the heart in terms of collecting pumping blood, and opening and closing of valves			
Outline the control of the heartbeat in terms of my muscle contraction, the role of the pacemaker, ne medulla of the brain and epinephrine (adrenaline)	rves, the		
6.2.5 Explain the relationship between the structure and of arteries, capillaries and veins.	d function		
6.2.6 State that blood is composed of plasma, erythrocy leucocytes (phagocytes and lymphocytes) and pla	·		
State that the following are transported by the blocuterients, oxygen, carbon dioxide, hormones, antiurea and heat.			

Name:

6.3 Defence against Infectious Disease - Core

	Assessment statement	OK	Review	Get help
6.3.1	Define pathogen.			
6.3.2	Explain why antibiotics are effective against bacteria but not against viruses.			
6.3.3	Outline the role of skin and mucous membranes in defence against pathogens.			
6.3.4	Outline how phagocytic leucocytes ingest pathogens in the blood and in body tissues.			
6.3.5	Distinguish between antigens and antibodies.			
6.3.6	Explain antibody production.			
6.3.7	Outline the effects of HIV on the immune system.			
6.3.8	Discuss the cause, transmission and social implications of AIDS.			

Name:

6.4 Gas Exchange - Core

	Assessment statement	OK	Review	Get help
6.4.1	Distinguish between ventilation, gas exchange and cell respiration.			
6.4.2	Explain the need for a ventilation system.			
6.4.3	Describe the features of alveoli that adapt them to gas exchange.			
6.4.4	Draw and label a diagram of the ventilation system, including trachea, lungs, bronchi, bronchioles and alveoli.			
6.4.5	Explain the mechanism of ventilation of the lungs in terms of volume and pressure changes caused by the internal and external intercostal muscles, the diaphragm and abdominal muscles.			

Name:

6.5 Nerves, Hormones, and Homeostasis - Core

	Assessment statement	OK	Review	Get help
6.5.1	State that the nervous system consists of the central nervous system (CNS) and peripheral nerves, and is composed of cells called neurons that can carry rapid electrical impulses.			
6.5.2	Draw and label a diagram of the structure of a motor neuron.			
6.5.3	State that nerve impulses are conducted from receptors to the CNS by sensory neurons, within the CNS by relay neurons, and from the CNS to effectors by motor neurons.			
6.5.4	Define resting potential and action potential (depolarization and repolarization).			
6.5.5	Explain how a nerve impulse passes along a non-myelinated neuron.			
6.5.6	Explain the principles of synaptic transmission.			
6.5.7	State that the endocrine system consists of glands that release hormones that are transported in the blood.			
6.5.8	State that homeostasis involves maintaining the internal environment between limits, including blood pH, carbon dioxide concentration, blood glucose concentration, body temperature and water balance.			

	Assessment statement	OK	Review	Get help
	Explain that homeostasis involves monitoring levels of variables and correcting changes in levels by negative feedback mechanisms.			
	Explain the control of body temperature, including the transfer of heat in blood, and the roles of the hypothalamus, sweat glands, skin arterioles and shivering.			
	Explain the control of blood glucose concentration, including the roles of glucagon, insulin and a and ß cells in the pancreatic islets.			
6.5.12	Distinguish between type I and type II diabetes.			

Name:

6.6 Reproduction - Core

	Assessment statement	OK	Review	Get help
6.6.1	Draw and label diagrams of the adult male and female reproductive systems.			
6.6.2	Outline the role of hormones in the menstrual cycle, including FSH (follicle stimulating hormone), LH (luteinizing hormone), estrogen and progesterone.			
6.6.3	Annotate a graph showing hormone levels in the menstrual cycle, illustrating the relationship between changes in hormone levels and ovulation, menstruation and thickening of the endometrium.			
6.6.4	List three roles of testosterone in males.			
6.6.5	Outline the process of in vitro fertilization (IVF).			
6.6.6	Discuss the ethical issues associated with IVF.			

Name:

7.1 DNA Structure - HL

	Assessment statement	OK	Review	Get help
	Describe the structure of DNA, including the antiparallel strands, 3'–5' linkages and hydrogen bonding between purines and pyrimidines.			
7.1.2	Outline the structure of nucleosomes.			
	State that nucleosomes help to supercoil chromosomes and help to regulate transcription.			
7.1.4	Distinguish between unique or single-copy genes and highly repetitive sequences in nuclear DNA.			
7.1.5	State that eukaryotic genes can contain exons and introns.			

Name:

7.2 DNA Replication - HL

	Assessment statement	OK	Review	Get help
7.2.1	State that DNA replication occurs in a 5' - 3' direction.			
	Explain the process of DNA replication in prokaryotes, including the role of enzymes (helicase, DNA polymerase, RNA primase and DNA ligase), Okazaki fragments and deoxynucleoside triphosphates.			
	State that DNA replication is initiated at many points in eukaryotic chromosomes.			

Name:

7.3 Transcription - HL

	Assessment statement	OK	Review	Get help
7.3.1	State that transcription is carried out in a 5' - 3' direction.			
7.3.2	Distinguish between the sense and antisense strands of DNA.			
7.3.3	Explain the process of transcription in prokaryotes, including the role of the promoter region, RNA polymerase, nucleoside triphosphates and the terminator.			
7.3.4	State that eukaryotic RNA needs the removal of introns to form mature mRNA.			

Name:

7.4 Translation - HL

	Assessment statement	OK	Review	Get help
7.4.1	Explain that each tRNA molecule is recognized by a tRNA-activating enzyme that binds a specific amino acid to the tRNA, using ATP for energy.			
7.4.2	Outline the structure of ribosomes, including protein and RNA composition, large and small subunits, three tRNA binding sites and mRNA binding sites.			
7.4.3	State that translation consists of initiation, elongation, translocation and termination.			
7.4.4	State that translation occurs in a 5' - 3' direction.			
7.4.5	Draw and label a diagram showing the structure of a peptide bond between two amino acids.			
7.4.6	Explain the process of translation, including ribosomes, polysomes, start codons and stop codons.			
7.4.7	State that free ribosomes synthesize proteins for use primarily within the cell, and that bound ribosomes synthesize proteins primarily for secretion or for lysosomes.			

Name:

7.5 Proteins - HL

	Assessment statement	OK	Review	Get help
7.5.1	Explain the four levels of protein structure, indicating the significance of each level.			
7.5.2	Outline the difference between fibrous and globular proteins, with reference to two examples of each protein type.			
7.5.3	Explain the significance of polar and non-polar amino acids.			
7.5.4	State four functions of proteins, giving a named example of each.			

Name:

7.6 Enzymes - HL

	Assessment statement	OK	Review	Get help
7.6.1	State that metabolic pathways consist of chains and cycles of enzyme catalysed reactions.			
7.6.2	Describe the induced-fit model.			
7.6.3	Explain that enzymes lower the activation energy of the chemical reactions that they catalyse.			
7.6.4	Explain the difference between competitive and non-competitive inhibition, with reference to one example of each.			
7.6.5	Explain the control of metabolic pathways by end-product inhibition, including the role of allosteric sites.			

Topic 8 Cell Respiration and Photosynthesis: Knowledge Audit

Name:

8.1 Cell Respiration - HL

Assessment statement	OK	Review	Get help
State that oxidation involves the loss of electrons from an element, whereas reduction involves a gain of electrons; and that oxidation frequently involves gaining O ₂ or losing H, whereas reduction frequently involves losing O ₂ or gaining hydrogen.			
Outline the process of glycolysis, including phosphorylation, lysis, oxidation and ATP formation.			
Draw and label a diagram showing the structure of a mitochondrion as seen in electron micrographs.			
Explain aerobic respiration, including the link reaction, the Krebs cycle, the role of NADH + H ⁺ , the electron transport chain and the role of O ₂ .			
Explain oxidative phosphorylation in terms of chemiosmosis.			
Explain the relationship between the structure of the mitochondrion and its function.			

Topic 8 Cell Respiration and Photosynthesis: Knowledge Audit

Name:

8.2 Photosynthesis - HL

	Assessment statement	OK	Review	Get help
8.2.1	Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs.			
8.2.2	State that photosynthesis consists of light-dependent and light-independent reactions.			
8.2.3	Explain the light-dependent reactions.			
8.2.4	Explain photophosphorylation in terms of chemiosmosis.			
8.2.5	Explain the light-independent reactions.			
8.2.6	Explain the relationship between the structure of the chloroplast and its function.			
8.2.7	Explain the relationship between the action spectrum and the absorption spectrum of photosynthetic pigments in green plants.			
8.2.8	Explain the concept of limiting factors in photosynthesis, with reference to light intensity, temperature and concentration of CO ₂ .			

Topic 9 Plant Science: Knowledge Audit

Name:

9.1 Plant Structure and Growth - HL

	Assessment statement	OK	Review	Get help
9.1.1	Draw and label diagrams to show the distribution of tissues in the stem and leaf of a dicotyledonous plant.			
9.1.2	Outline three differences between the structures of dicotyledonous and monocotyledonous plants.			
9.1.3	Explain the relationship between the distribution of tissues in the leaf and the functions of these tissues.			
9.1.4	Identify modifications of roots, stems and leaves for different functions: bulbs, stem tubers, storage roots and tendrils.			
9.1.5	State that dicotyledonous plants have apical and lateral meristems.			
9.1.6	Compare growth due to apical and lateral meristems in dicotyledonous plants.			
9.1.7	Explain the role of auxin in phototropism as an example of the control of plant growth.			

Topic 9 Plant Science: Knowledge Audit

Name:

9.2 Transport in Angiospermophytes - HL

	Assessment statement	OK	Review	Get help
	Outline how the root system provides a large surface area for mineral ion and water uptake by means of branching and root hairs.			
9.2.2	List ways in which mineral ions in the soil move to the root.			
	Explain the process of mineral ion absorption from the soil into roots by active transport.			
	State that terrestrial plants support themselves by means of thickened cellulose, cell turgor and lignified xylem.			
9.2.5	Define transpiration.			
	Explain how water is carried by the transpiration stream, including the structure of xylem vessels, transpiration pull, cohesion, adhesion and evaporation.			
	State that guard cells can regulate transpiration by opening and closing stomata.			
	State that the plant hormone abscisic acid causes the closing of stomata.			
	Explain how the abiotic factors light, temperature, wind and humidity, affect the rate of transpiration in a typical terrestrial plant.			
	Outline four adaptations of xerophytes that help to reduce transpiration.			
	Outline the role of phloem in active translocation of sugars (sucrose) and amino acids from source (photosynthetic tissue and storage organs) to sink (fruits, seeds, roots).			

Topic 9 Plant Science: Knowledge Audit

Name:

9.3 Reproduction in Angiospermophytes – HL

	Assessment statement	OK	Review	Get help
9.3.1	Draw and label a diagram showing the structure of a dicotyledonous animal-pollinated flower.			
9.3.2	Distinguish between pollination, fertilization and seed dispersal.			
9.3.3	Draw and label a diagram showing the external and internal structure of a named dicotyledonous seed.			
9.3.4	Explain the conditions needed for the germination of a typical seed.			
9.3.5	Outline the metabolic processes during germination of a starchy seed.			
9.3.6	Explain how flowering is controlled in long-day and short-day plants, including the role of phytochrome.			

Topic 10 Genetics: Knowledge Audit

Name:

10.1 Meiosis – HL

	Assessment statement	OK	Review	Get help
10.1.1	Describe the behaviour of the chromosomes in the phases of meiosis.			
	Outline the formation of chiasmata in the process of crossing over.			
	Explain how meiosis results in an effectively infinite genetic variety in gametes through crossing over in prophase I and random orientation in metaphase I.			
10.1.4	State Mendel's law of independent assortment.			
	Explain the relationship between Mendel's law of independent assortment and meiosis.			

Topic 10 Genetics: Knowledge Audit

Name:

10.2 Dihybrid Crosses and Gene Linkage – HL

	Assessment statement	OK	Review	Get help
10.2.1	Calculate and predict the genotypic and phenotypic ratio of offspring of dihybrid crosses involving unlinked autosomal genes.			
10.2.2	Distinguish between autosomes and sex chromosomes.			
10.2.3	Explain how crossing over between non-sister chromatids of a homologous pair in prophase I can result in an exchange of alleles.			
10.2.4	Define linkage group.			
10.2.5	Explain an example of a cross between two linked genes.			
10.2.6	Identify which of the offspring are recombinants in a dihybrid cross involving linked genes.			

Topic 10 Genetics: Knowledge Audit

Name:

10.3 Polygenic Inheritance – HL

	Assessment statement	OK	Review	Get help
10.3.1	Define polygenic inheritance.			
	Explain that polygenic inheritance can contribute to continuous variation using two examples, one of which must be human skin colour.			

Topic 11 Human Health and Physiology: Knowledge Audit

Name:

11.1 Defence against Infectious Disease – HL

	Assessment statement	OK	Review	Get help
11.1.1	Describe the process of blood clotting.			
11.1.2	Outline the principle of challenge and response, clonal selection and memory cells as the basis of immunity.			
11.1.3	Define active and passive immunity.			
11.1.4	Explain antibody production.			
11.1.5	Describe the production of monoclonal antibodies and their use in diagnosis and in treatment.			
11.1.6	Explain the principle of vaccination.			
11.1.7	Discuss the benefits and dangers of vaccination.			

Topic 11 Human Health and Physiology: Knowledge Audit Name:

11.2 Muscles and Movement – HL

	Assessment statement	OK	Review	Get help
	State the roles of bones, ligaments, muscles, tendons and nerves in human movement.			
	Label a diagram of the human elbow joint, including cartilage, synovial fluid, joint capsule, named bones and antagonistic muscles (biceps and triceps).			
	Outline the functions of the structures in the human elbow joint named in 11.2.2.			
11.2.4	Compare the movements of the hip joint and the knee joint.			
	Describe the structure of striated muscle fibres, including the myofibrils with light and dark bands, mitochondria, the sarcoplasmic reticulum, nuclei and the sarcolemma.			
	Draw and label a diagram to show the structure of a sarcomere, including Z lines, actin filaments, myosin filaments with heads, and the resultant light and dark bands.			
	Explain how skeletal muscle contracts, including the release of calcium ions from the sarcoplasmic reticulum, the formation of cross-bridges, the sliding of actin and myosin filaments, and the use of ATP to break cross-bridges and re-set myosin heads.			
	Analyse electron micrographs to find the state of contraction of muscle fibres.			

Topic 11 Human Health and Physiology: Knowledge Audit

Name:

11.3 The Kidney – HL

	Assessment statement	OK	Review	Get help
11.3.1	Define excretion.			
11.3.2	Draw and label a diagram of the kidney.			
	Annotate a diagram of a glomerulus and associated nephron to show the function of each part.			
	Explain the process of ultrafiltration, including blood pressure, fenestrated blood capillaries and basement membrane.			
11.3.5	Define osmoregulation.			
	Explain the reabsorption of glucose, water and salts in the proximal convoluted tubule, including the roles of microvilli, osmosis and active transport.			
	Explain the roles of the loop of Henle, medulla, collecting duct and ADH (vasopressin) in maintaining the water balance of the blood.			
	Explain the differences in the concentration of proteins, glucose and urea between blood plasma, glomerular filtrate and urine.			
	Explain the presence of glucose in the urine of untreated diabetic patients.			

Topic 11 Human Health and Physiology: Knowledge Audit

Name:

11.4 Reproduction – HL

	Assessment statement	OK	Review	Get help
11.4.1	Annotate a light micrograph of testis tissue to show the location and function of interstitial cells (leydig cells), germinal epithelium cells, developing spermatozoa and Sertoli cells.			
11.4.2	Outline the processes involved in spermatogenesis within the testis, including mitosis, cell growth, the two divisions of meiosis and cell differentiation.			
11.4.3	State the role of LH, testosterone and FSH in spermatogenesis.			
11.4.4	Annotate a diagram of the ovary to show the location and function of germinal epithelium, primary follicles, mature follicle and secondary oocyte.			
11.4.5	Outline the processes involved in oogenesis within the ovary, including mitosis, cell growth, the two divisions of meiosis, the unequal division of cytoplasm and the degeneration of polar body.			
11.4.6	Draw and label a diagram of a mature sperm and egg.			
11.4.7	Outline the role of the epididymis, seminal vesicle and prostate gland in the production of semen.			

	Assessment statement	OK	Review	Get help
11.4.8	Compare the processes of spermatogenesis and oogenesis, including the number of gametes and the timing of the formation and release of gametes.			
11.4.9	Describe the process of fertilization, including the acrosome reaction, penetration of the egg membrane by a sperm and the cortical reaction.			
11.4.10	Outline the role of HCG in early pregnancy.			
11.4.11	Outline early embryo development up to the implantation of the blastocyst.			
11.4.12	Explain how the structure and functions of the placenta, including its hormonal role in secretion of estrogen and progesterone, maintain pregnancy.			
11.4.13	State that the fetus is supported and protected by the amniotic sac and amniotic fluid			
11.4.14	State that materials are exchanged between the maternal and fetal blood in the placenta.			
11.4.15	Outline the process of birth and its hormonal control, including the changes in progesterone and oxytocin levels and positive feedback.			

Name:

D.1 Origin of Life on Earth - Core

Assessment statement	OK	Review	Get help
Describe four processes needed for the spontaneous origin of life on Earth.			
Outline the experiments of Miller and Urey into the origin of organic compounds.			
State that comets may have delivered organic compounds to Earth.			
Discuss possible locations where conditions would have allowed the synthesis of organic compounds.			
Outline two properties of RNA that would have allowed it to play a role in the origin of life.			
State that living cells may have been preceded by protobionts, with an internal chemical environment different from their surroundings.			
Outline the contribution of prokaryotes to the creation of an oxygen-rich atmosphere.			
Discuss the endosymbiotic theory for the origin of eukaryotes.			

Name:

D.2 Species and Speciation - Core

	Assessment statement	OK	Review	Get help
D.2.1	Define allele frequency and gene pool.			
	State that evolution involves a change in allele frequency in a population's gene pool over a number of generations.			
D.2.3	Discuss the definition of the term species.			
D.2.4	Describe three examples of barriers between gene pools.			
D.2.5	Explain how polyploidy can contribute to speciation.			
D.2.6	Compare allopatric and sympatric speciation.			
D.2.7	Outline the process of adaptive radiation.			
D.2.8	Compare convergent and divergent evolution.			
	Discuss ideas on the pace of evolution, including gradualism and punctuated equilibrium.			
D.2.10	Describe one example of transient polymorphism.			
	Describe sickle-cell anemia as an example of balanced polymorphism.			

Name:

D.3 Human Evolution - Core

	Assessment statement	OK	Review	Get help
D.3.1	Outline the method for dating rocks and fossils using radioisotopes, with reference to 14C and 40K.			
D.3.2	Define half-life.			
	Deduce the approximate age of materials based on a simple decay curve for a radioisotope.			
	Describe the major anatomical features that define humans as primates.			
	Outline the trends illustrated by the fossils of Ardipithecus ramidus, Australopithecus including A. afarensis and A. africanus, and Homo including H. habilis, H. Erectus, H. neanderthalensis and H. sapiens.			
	State that, at various stages in hominid evolution, several species may have coexisted.			
D.3.7	Discuss the incompleteness of the fossil record and the resulting uncertainties about human evolution.			
	Discuss the correlation between the change in diet and increase in brain size during hominid evolution.			
D.3.9	Distinguish between genetic and cultural evolution.			
	Discuss the relative importance of genetic and cultural evolution in the recent evolution of humans.			

Name:

D.4 Human Evolution – HL

	Assessment statement	OK	Review	Get help
D.4.1	Explain how the Hardy–Weinberg equation is derived.			
	Calculate allele, genotype and phenotype frequencies for two alleles of a gene, using the Hardy–Weinberg equation.			
D.4.3	State the assumptions made when the Hardy–Weinberg equation is used.			

Name:

D.5 Phylogeny and Systematics – HL

	Assessment statement	OK	Review	Get help
D.5.1	Outline the value of classifying organisms.			
	Explain the biochemical evidence provided by the universality of DNA and protein structures for the common ancestry of living organisms.			
	Explain how variations in specific molecules can indicate phylogeny.			
	Discuss how biochemical variations can be used as an evolutionary clock.			
D.5.5	Define clade and cladistics.			
	Distinguish, with examples, between analogous and homologous characteristics.			
	Outline the methods used to construct cladograms and the conclusions that can be drawn from them.			
D.5.8	Construct a simple cladogram.			
D.5.9	Analyse cladograms in terms of phylogenetic relationships.			
D.5.10	Discuss the relationship between cladograms and the classification of living organisms.			

Option G Ecology and Conservation: Knowledge Audit

Name:

G.1 Community and Ecology – Only SL

	Assessment statement	OK	Review	Get help
	Outline the factors that affect the distribution of plant species, including temperature, water, light, soil pH, salinity and mineral nutrients.			
	Explain the factors that affect the distribution of animal species, including temperature, water, breeding sites, food supply and territory.			
	Describe one method of random sampling, based on quadrat methods, that is used to compare the population size of two plant or two animal species.			
	Outline the use of a transect to correlate the distribution of plant or animal species with an abiotic variable.			
	Explain what is meant by the niche concept, including an organism's spatial habitat, its feeding activities and its interactions with other species.			
	Outline the following interactions between species, giving two examples of each: competition, herbivory, predation, parasitism and mutualism.			
G.1.7	Explain the principle of competitive exclusion.			
G.1.8	Distinguish between fundamental and realized niches.			
G.1.9	Define biomass.			
	Describe one method for the measurement of biomass of different trophic levels in an ecosystem.			

Option G Ecology and Conservation: Knowledge Audit

Name:

G.2 Ecosystem and Biomes – Only SL

	Assessment statement	OK	Review	Get help
G.2.1	Define gross production, net production and biomass.			
	Calculate values for gross production and net production using the equation: gross production – respiration = net production.			
	Discuss the difficulties of classifying organisms into trophic levels.			
	Explain the small biomass and low numbers of organisms in higher trophic levels.			
	Construct a pyramid of energy, given appropriate information.			
	Distinguish between primary and secondary succession, using an example of each.			
	Outline the changes in species diversity and production during primary succession.			
	Explain the effects of living organisms on the abiotic environment, with reference to the changes occurring during primary succession.			
G.2.9	Distinguish between biome and biosphere.			
	Explain how rainfall and temperature affect the distribution of biomes.			
G.2.11	Outline the characteristics of six major biomes.			

Option G Ecology and Conservation: Knowledge Audit

Name:

G.3 Impacts of Humans on Ecosystems – Only SL

	Assessment statement	OK	Review	Get help
· ·	Calculate the Simpson diversity index for two local communities.			
	Analyse the biodiversity of the two local communities using the Simpson index.			
· ·	Discuss reasons for the conservation of biodiversity using rainforests as an example.			
	List three examples of the introduction of alien species that have had significant impacts on ecosystems.			
G.3.5	Discuss the impacts of alien species on ecosystems.			
	Outline one example of biological control of invasive species.			
G.3.7	Define biomagnification.			
l.	Explain the cause and consequences of biomagnification, using a named example.			
l.	Outline the effects of ultraviolet (UV) radiation on living tissues and biological productivity.			
	Outline the effect of chlorofluorocarbons (CFCs) on the ozone layer.			
G.3.11	State that ozone in the stratosphere absorbs UV radiation.			

Name:

H.1 Hormonal Control – Only HL

	Assessment statement	OK	Review	Get help
	State that hormones are chemical messengers secreted by endocrine glands into the blood and transported to specific target cells.			
H.1.2	State that hormones can be steroids, proteins and tyrosine derivatives, with one example of each.			
H.1.3	Distinguish between the mode of action of steroid hormones and protein hormones.			
H.1.4	Outline the relationship between the hypothalamus and the pituitary gland.			
H.1.5	Explain the control of ADH (vasopressin) secretion by negative feedback.			

Name:

H.2 Digestion – Only HL

	Assessment statement	OK	Review	Get help
	State that digestive juices are secreted into the alimentary canal by glands, including salivary glands, gastric glands in the stomach wall, the pancreas and the wall of the small intestine.			
H.2.2	Explain the structural features of exocrine gland cells.			
	Compare the composition of saliva, gastric juice and pancreatic juice.			
	Outline the control of digestive juice secretion by nerves and hormones, using the example of secretion of gastric juice.			
	Outline the role of membrane bound enzymes on the surface of epithelial cells in the small intestine in digestion.			
	Outline the reasons for cellulose not being digested in the alimentary canal.			
	Explain why pepsin and trypsin are initially synthesized as inactive precursors and how they are subsequently activated.			
	Discuss the roles of gastric acid and Helicobacter pylori in the development of stomach ulcers and stomach cancers.			
	Explain the problem of lipid digestion in a hydrophilic medium and the role of bile in overcoming this.			

Name:

H.3 Absorption of Digested Food – Only HL

Assessment statement	OK	Review	Get help
Draw and label a diagram showing a transverse section of the ileum as seen under a light microscope.			
Explain the structural features of an epithelial cell of a villus as seen in electron micrographs, including microvilli, mitochondria, pinocytotic vesicles and tight junctions.			
Explain the mechanisms used by the ileum to absorb and transport food, including facilitated diffusion, active transport and endocytosis.			

Name:

H.4 The Functions of the Liver – Only HL

	Assessment statement	OK	Review	Get help
H.4.1	List the materials that are not absorbed and are egested.			
	Outline the circulation of blood through liver tissue, including the hepatic artery, hepatic portal vein, sinusoids and hepatic vein.			
	Explain the role of the liver in regulating levels of nutrients in the blood.			
	Outline the role of the liver in the storage of nutrients, including carbohydrate, iron, vitamin A and vitamin D.			
	State that the liver synthesizes plasma proteins and cholesterol.			
	State that the liver has a role in detoxification.			
	Describe the process of erythrocyte and hemoglobin breakdown in the liver, including phagocytosis, digestion of globin and bile pigment formation.			
	Explain the liver damage caused by excessive alcohol consumption.			

Name:

H.5 The Transport System – Only HL

	Assessment statement	OK	Review	Get help
H.5.1	Explain the events of the cardiac cycle, including atrial and ventricular systole and diastole, and heart sounds.			
H.5.2	Analyse data showing pressure and volume changes in the left atrium, left ventricle and the aorta, during the cardiac cycle.			
H.5.3	Outline the mechanisms that control the heartbeat, including the roles of the SA (sinoatrial) node, AV (atrioventricular) node and conducting fibres in the ventricular walls.			
H.5.4	Outline atherosclerosis and the causes of coronary thrombosis.			
H.5.5	Discuss factors that affect the incidence of coronary heart disease.			

Name:

H.6 Gas Exchange – Only HL

	Assessment statement	OK	Review	Get help
H.6.1	Define partial pressure.			
	Explain the oxygen dissociation curves of adult hemoglobin, fetal hemoglobin and myoglobin.			
	Describe how carbon dioxide is carried by the blood, including the action of carbonic anhydrase, the chloride shift and buffering by plasma proteins.			
	Explain the role of the Bohr shift in the supply of oxygen to respiring tissues.			
H.6.5	Explain how and why ventilation rate varies with exercise.			
	Outline the possible causes of asthma and its effects on the gas exchange system.			
	Explain the problem of gas exchange at high altitudes and the way the body acclimatizes.			