9.1 Plant structure and growth – *summary of mark schemes*

Draw and label plan diagrams to show the distribution of tissues in the stem and leaf of a dicotyledonous plant.

Mark Scheme

- A. upper epidermis;
- B. palisade layer / mesophyll;
- C. spongy layer / mesophyll;
- D. lower epidermis;
- E. xylem (in a major or minor vein);
- F. phloem (in a major or minor vein);
- G. collenchyma (in the midrib);
- H. guard cells; (do not accept stoma / stomata only)
- 9.1.2 Outline three differences between the structures of dicotyledonous and monocotyledonous plants.

Mark Scheme

Structure	Monocotyledonous	Dicotyledonus
leaf	parallel veins	branched (net of) veins;
seed	one cotyledon	two cotyledons;
flower	floral parts in multiple of 3	floral parts in multiple of 4 or 5;
stem	scattered vascular bundles	ring of vascular bundles around central pith;
root	adventitious roots	branched tap roots;

- 9.1.3 Explain the relationship between the distribution of tissues in the leaf and the functions of these tissues.
- 9.1.4 Identify modifications of roots, stems and leaves for different functions: bulbs, stem tubers, storage roots and tendrils.
- 9.1.5 State that dicotyledonous plants have apical and lateral meristems.
- 9.1.6 Compare growth due to apical and lateral meristems in dicotyledonous plants.
- 9.1.7 Explain the role of auxin in phototropism as an example of the control of plant growth.

Mark Scheme

- A. auxin produced at apical meristem / tip;
- B. transported to growing area / zone of cell growth;
- C. lateral transport to cells on shade side;
- D. results in cell expansion;
- E. shoot "grows" towards light source;
- F. experimental detail;